In-Situ UV モニタリングシステム μDISS を用いた 難溶性化合物の Induction time および Precipitation rate の測定 フィジオマキナ株式会社 応用技術研究所 CTO 武田日出夫 Hideo Takeda

【はじめに】

過飽和溶液から物質が析出する場合、は じめに、溶液中に結晶の核が生成する。そ の後、結晶の増加と成長に伴い、溶液中の 物質濃度が低下する。晶析操作や、難溶性 化合物の可溶化検討において、過飽和溶液 中での結晶の生成と溶液中の濃度変化は重 要な評価項目である。

本アプリケーションノートでは、過飽和 結晶の核が生成するまでの時間である誘導 時間(Induction time)および物質の析出速 度(Precipitation rate)を µDISS システムと Predictor ソフトウェア(いずれも Pion, Inc.)を用いて算出する手法を紹介する。

【µDISS と Predictor ソフトウェア】

Pion, Inc.のµDISS システム(図 1)は、 ~20 mLの少量の試験液で溶出試験を実施 することのできるシステムである。µDISS システムは In-Situ UV プローブを備えて おり、試料溶液中の物質濃度をろ過や希釈 を行わずにリアルタイムでモニタリングす ることができる。そのため、過飽和溶液の 濃度測定に強みがあり、欧米や日本を含む アジアなど、多くの研究機関、大学、企業 の研究部門等で使用されている。

Predictor ソフトウェアは、2023 年にリ リースされた µDISS などで取得されたデ ータの解析用ソフトウェアである。ヒトに おける%Fa 予測など様々な機能を備えた ソフトウェアであるが、本アプリケーショ ンノートでは Induction time 解析と

PHYSIO

Precipitation rate 解析に焦点を当てる。

図1 µDISS システムの外観。最大 8ch で同時にデータを取得することが可能である。

【Induction Time】 <試験手順の例>

µDISS 用 24 mm バイアルにスターラー を入れ、試験液(事前に脱気し、37 ℃に加 温した液)を分注する。

試験開始とともに被験物質の高濃度溶液 (例: 2.0 mg/mL の濃度で調製した DMSO 溶液)を試験液に滴下し、撹拌を開始す る。滴下後、120 分間撹拌と濃度モニタリ ングを継続する(図 2)。

図 2 µDISS システムを用いた Induction Rate Assay の実行。

<データの解析>

Predictor ソフトウェア上で時間-濃度曲 線を開き、Assay Type を"Induction time"に 設定する。Induction time 解析では、析出の 最初のタイムポイント、(濃度が低下し始め るタイムポイント)を決定する操作を行う。

時間-濃度曲線上で、濃度が一定の時間領 域を選択すると、選択した範囲内で線形近 似が行われ、近似直線が作成される。 Predictor ソフトウェアは、濃度が近似直線 から逸脱する点を自動的に認識し、その時 点を Induction time として表示する(図 3)。

図 3 Predictor ソフトウェア上で表示させた Induction time Assay の時間-濃度曲線。例とし て、アリピプラゾールの析出挙動を示す。

アリピプラゾールの初期濃度を $0.5\mu g/mL \sim 9.5\mu g/mL$ の範囲で変化させ、 Induction time 測定を行った結果を図4に 示す。一般的に、Induction time は図5のよ うに発生確率に従い分布する。アリピプラ ゾールを用いた試験例においても、低過飽 和度領域においては Induction time が広く 分布し、高過飽和度領域においては、 Induction time が収束する結果が得られた。

図 4 測定結果(例) アリピプラゾールの初期 濃度を変化させた場合の Induction time の分 布。(溶媒:溶出試験第2液)

図 5 過飽和度が異なる場合の Induction time の分布イメージ。

【Precipitation Rate】 <試験手順の例>

2

Precipitation rate(析出速度)試験は、 Induction time(誘導時間)試験と同手順に て実施することができる。即ち、同一の試験

The Exclusive Distributor of Pion in JAPAN

フィジオマキナ株式会社 www.physiomckina.co.jp
〒343-0816 埼玉県越谷市弥生町 1-4 越谷弥生ビル 2F
TEL:050-3536-1817 FAX:048-964-9930 E-mail: contact@physiomckina.co.jp

から Induction time と Precipitation rate を 算出することが可能である。

<データの解析>

Predictor ソフトウェア上で時間-濃度曲 線を開き、Assay Type を"Precipitation rate" に設定する。Precipitation rate 解析では、 析出速度の最大値を決定する操作を行う。 時間-濃度曲線上で、濃度低下速度が最も大 きいタイムポイント(時間-濃度曲線の傾き が最小の点)と濃度がプラトーに達した点 を含むように計算領域を選択する(図6)。領 域を選択すると、選択した範囲内で曲線近 似が行われ、近似曲線が作成される。 Predictor ソフトウェアは、濃度が近似曲線 の傾きから Precipitation rate を算出する。

図 6 Predictor ソフトウェア上で表示させた Precipitation rate Assay の時間-濃度曲線。例 として、アリピプラゾールの析出挙動を示す。

アリピプラゾールの初期濃度を 0.5µg/mL~9.5µg/mL の範囲で変化させ、 Precipitation rate 測定を行った結果を図7 に示す。アリピプラゾールの初期濃度の増 加に伴い、Precipitation rate も増加する挙 動が得られた。

図 7 測定結果(例) アリピプラゾールの初期 濃度を変化させた場合の Precipitation rate の 分布。(溶媒:溶出試験第2液)

【まとめ】

3

本アプリケーションノートでは難溶性化 合物の Induction time と Precipitation rate の測定例を示した。例示した以外にも、 µDISS は人工胃液、腸液を用いた胃腸管様 環境での試験や、共結晶を用いた試験など、 様々な条件での試験が可能である。データ 解析ソフウェアである Predictor ソフトウ ェアと組み合わせることにより、難溶性化 合物の可溶化研究や晶析条件のさらなる迅 速化が期待できる。

試験手順や機器について詳細のご説明を 希望される場合は、フィジオマキナ株式会 社担当者までお問い合わせください。

The Exclusive Distributor of Pion in JAPAN

フィジオマキナ株式会社 www.physiomckina.co.jp
〒343-0816 埼玉県越谷市弥生町 1-4 越谷弥生ビル 2F
TEL:050-3536-1817 FAX:048-964-9930 E-mail:contact@physiomckina.co.jp