

Nihon Validation Technologies Corporation Tsunehiro Harada Ph.D. Senior Scientist

Investigation of co-crystallization using carbamazepine

Experiment

Crystal 16 was used to study the formation of co-crystals with Carbamazepine as a sample compound. When the mixing ratio of Carbamazepine and co-former was changed (by changing the mole fraction), and the possibility of co-crystallization was investigated by observing how the saturation temperature (Ts) changed, a stable region (where Ts increased) appeared, inferring the formation of co-crystals.

*Information on sample compounds

Carbamazepine (CBZ)

CAS No.: 298-46-4 Chemical formula : C15H12N2O Molecular weight: 236.27 Solubility: 25 mg/mL (25°C) in EtOH Value on solubility curve

Co-formers

Picolinamide (PA) CAS Number : 1452-77-3 Chemical formula : C6H6N2O Molecular weight: 122.13 Solubility: 150 mg/mL (25°C) in EtOH Value on solubility curve

Isonicotinamide (INA) CAS Number : 98-92-0 Chemical formula : C6H6N2O Molecular weight: 122.13 Solubility: 70 mg/mL (25°C) in EtOH Value on solubility curve

<u>1. Preparation of measurement sample</u>

Fourteen different EtOH solutions were prepared in conformance with the red portions of the table below.

In the case of CBZ-INA

		$\chi CBZ / \chi CBZ^{*}(T) + \chi INA / \chi INA^{*}(T) = 1$			$yCBZ = \chi CBZ / (\chi CBZ + \chi INA)$					
CBZ	and INA									
	Ts	χCBZ*(T)	χCBZ	χINA*(T)	χINA	yCBZ		CBZ(mg)	INA(mg)	50
1	44	0.050/236	0.050/236	-	0	 1		50	0	41
2	42	0.048/236	0.045/236	0.120/122	0.008/122	 0.74		45	8	-30
3	36	0.040/236	0.035/236	0.10/122	0.013/122	 0.58		35	13	2
4	31	0.038/236	0.031/236	0.09/122	0.017/122	 0.49		31	17	-
5	26	0.031/236	0.023/236	0.08/122	0.021/122	0.36		23	21	1
6	22	0.025/236	0.017/236	0.07/122	0.022/122	0.28		17	22	
7	18	0.022/236	0.013/236	0.06/122	0.025/122	0.21		13	25	
8	22	0.025/236	0.014/236	0.07/122	0.031/122	0.19		14	31	
9	26	0.031/236	0.011/236	0.08/122	0.052/122	0.11		11	52	
10	28	0.035/236	0.009/236	0.08/122	0.059/122	0.05		9	59	
11	31	0.038/236	0.007/236	0.09/122	0.073/122	0.03		7	73	
12	33	0.039/236	0.005/236	0.10/122	0.087/122	0.03		5	87	
13	35	0.040/236	0.003/236	0.11/122	0.102/122	0.01		3	102	
14	38	0.042/236	0	0.12/122	0.120/122	0		0	120	
[[

Relation between Ts and yCBZ (INA) on graph

A graph of Ts and yCBZ was generated using the values in the table. If no co-crystallization occurs, the dissolution temperature of each yCBZ sample should be similar to the above curve.

* The saturation mole fraction of each component at the indicated temperature. Ts values are read from the graph of the solubility curve of each component.

2. Selection of measurement conditions

A total of 10 to 12 different sample solutions were used for each combination and measurement started from 10°C. The temperature was raised to 65°C at 4°C/min and the experiment was terminated after waiting for 1 minute.

3. Measurement results

C16 Example of measurement screenshot for CBZ-INA (sample numbers: 2, 3, 5, 6)

CrystalClear Analysis Example (CBZ-INA Sample No. 6)

	Ts (predicted value)	Ts (actual measured value)	уCBZ	CBZ(m g)	PA(mg)
1	44	56.0	1	50	0
2	42	51.0	 0.64	45	13
3	36	39.1	0.44	35	23
4	31	32.6	 0.31	30	34
5	26	10.0	 0.26	24	34
6	22	10.0	 0.18	18	42
7	18	10.0	 0.12	14	51
8	22	24.5	 0.10	14	62
9	26	28.8	 0.06	 11	103
11	31	29.7	 0.03	7	131
14	38	44.4	 0	0	210

	Ts (predicted value)	Ts (actual measured value)		yCBZ		CBZ(m g)	INA(m g)		
1	44	56.0		1		50	0		
2	42	52.7		0.74		45	8		
3	36	41.9		0.58		35	13		
4	31	47.3		0.49		31	17		
5	26	41.6		0.36		23	21		
6	22	40.1		0.28		17	22		
8	22	42.9		0.19		14	31		
9	26	43.8		0.11		11	52		
10	28	39.9		0.05		9	59		
11	31	46.2		0.03		7	73		
14	38 _	60.1		0		0	120		
Ts(℃) Ts and yCBZ (INA)									
60	.0								
50	50.0								
40	.0		•						
30	.0								
20	.0	•,				_			
10	.0								
	0 0.2	0.4	0.6	0.8		1 y	CBZ		

Investigation of co-crystallization using Carbamazepine

Result:

In the case of CBZ and INA, for a sample with a yCBZ of approximately 0.2, a solution was obtained after mixing and stirring for a while, and new crystals were then precipitated. The crystals dissolved at approximately 45°C. Co-crystal formation was therefore considered to have occurred. Under the same conditions no crystal precipitation was observed for CBZ and PA near yCBZ 0.2.

Next steps

We plan to compare the respective Raman spectra of CBZ, INA, and precipitated crystals.

Reference data (manufacturer's announcement)

CBZ (carbamazepine)

PA (picolinamide)

YCBZ = XCBZ / (XCBZ + Xco-former)

Figure 5: The saturation temperature T_s [°C] as a function of the solvent-excluded mole fraction \mathcal{Y}_{CBZ} of CBZ with co-former PA (a) and INA (b). The saturation temperatures of the single-component API and co-former and the co-crystal predicted using the van 't Hoff parameters are shown as solid lines from the pure-component axes.

The exclusive distributor of Technobis in Japan Nihon Validation Technologies Corporation contact@validation.co.jp